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transformation capabilities is invaluable in the design of balanced mi-A Novel Interpretation of Transistor S-Parameters by

crowave circuits such as mixers, push—pull amplifiers, and frequency Poles and Zeros for RF IC Circuit Design
doublers.
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sub-micrometer gate GaAs FET with gate width of 4 mm on a Smith chart. —
experimental data~5-: calculated values by our theory. Note that the kink
phenomenon of; is indicated by an arrow.
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®)

theory [2] with some necessary circuit element modifications as fq;Tg_ 2. Setup for the measurement of transisteparameters. (a) Complete

lows: circuit. (b) Simplified circuit with the local series—series feedback elenfeg)
C = L @) absorbed.
Jas = :
14 gm Rs guadratic equation as follows, by which two poles; andw,> can
R; =R, + Rs (2) be solved easily:
o Ca @) D(s) =1+ 5 [Cee(Zor + Ry) + Cie(Z02 + Ra)
T 14 gmRs + Chalgm(Zor + Ry)(Zoz + Ra)
Ry =Ra.- (14 gmRs) ) +(Zo1 + Ry) + (Zoz + Ra))]
2
Céd — C‘gd (5) +s [(C;;clcés + Cédcc,ls + O);scclls)
g (Zo1 + Ry)(Zo2 + Rd)] =0. 9)
! Ym
Jm = m (6)  For the discussions that follows, for convenience, we will call (8)

the three-pole approximation and (9) the two-pole approximation. In
solving (9), the method of dominant pole approximation [3] can be
utilized if a dominant pole indeed exists, i.e., the lowest frequency
pole is at least two octaves lower than the other pole. As an illustrative
example, the solutions (poles) of (9) found by the dominant pole
approximation are listed in Table I.
=0 @ The zeros ofS; are the roots of/(s) = Zin — Zo1 = 0. This

Zin + Zo zero equation can be viewed as the transformation of the pole equation
By definition, the poles of1; are the roots of.(s) = Zin+Zo1 = 0. L(s) = Zw + Zor = 0 with Zoy in L(s) is replaced by—Zos .
Zin can be calculate_d anfl(s) = 0 can be proven to be equivalent toEquivaIentIy, the zero equation & 1, which we callN1(s) = 0,
equationD(s) = 0 given by can be obtained easily by replaciaigp; in D(s) = 0 with —Zo1.

whereg,, = gmo - exp(—jwr) and g, is the dc transconductance
and all the other symbols have their usual meanings.

SetV, = 0 andV; # 0 for the discussions of1; and Sz;. If
the input impedance seen to the right-hand sid&®f in Fig. 2(b) is
denoted byZi.,, thenS,, is given by

Zin - Z
Sll o1

D(s) =1+ 5[Ch (Zo1 + Ry + R}) + C4s(Zo2 + Ra)
+ Caa (g:n(Zm + Ry)(Zo2 + Rq)
+(Zo1 + Ry) + (Zos + Rd))] + 5
- [(CeaCls + CoaCls + CsCas) (Zor + Ry)
(Zo2 + Ra) + (CesCla + CoeChe) R;
(Zo2 + Ra) 4 CyeCraRi(Zo1 + Ry)]
+ 5°Cp.CaaCacRi(Zo1 + Ry)(Zoz + Ry) = 0. (8)

The expression oD(s) in (8) may be complicated at a first glance
because it involves a cubic equation. However, usu&flycan be ne-

At dc frequencyS1; = 1 becaus&’;, andCy, are open circuits and,
therefore,Si1 can be written as follows for all frequencies:

(10)

S = Zin — Zon
" Zin + ZO1
_1 _'7\71(8)
a D(s)
<1 + _> <1 + L)
N Wz Wzo
= 1 - . .
<1 4 ;) <1 4 ;)
wWpP1 Wp2

glected, as well as the product & Cj.. Thus, (8) is reduced to a wherewz1 andwz» are the two zeros of .
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The physical meaning of.; is twice that of the voltage gain

TABLE |

Voo /Vi. Since the poles of all the fou-parameters are the same, EXPRESSIONS OFPOLES AND ZEROS OFS11 AND 52z BY DOMINANT POLE

S21 can be given easily by the inspection of Fig. 2(b) as follows:

(ZERO) APPROXIMATION

S _ "7(')2 2 -1
21 — i ) Dp1 = (Cé;ZoIP'*Céd(1+g;nzazp)zo/p+(céd*Cfi:)Zozr)
Poles , ,
r C C
5Cha of [(Y,,,P g, ey, Y}
1- —g:n S-parameters o = Cp +Cy ¢, v,
P L — p2 oo
=—-2An L+ ScésRi' ‘Cgscgd + C,',_v
‘ D(s) C, + Cyy
S
1- — -1
=924y < Y5 ) (11) @y = (Cészolz+céd(1+g;nzozp)Zalz+(céd+c‘iv)zozp>
. s s , .
14+ — 1 c c
< +w#1)< +wpz> (, +g)—E— sy 4 .y
Zeros of Sy, oz Il ur Lo op
2 . . @»_ ., = & gd g5 gd
whereA s = gi, Zo2 (R || (Ra+ Zo2)) /(Zo2 + Ra) is the midband 22 c.c,
gain ofVo2/Vi - was = gh, /Cly. o
We now turn our attention int6,, andS;» by settingl; = 0 and e O
V2 # 0. If the output impedance seen to the left-hand sid&€ef is
denoted byZ,.¢, thenSs. is given by i
@D,z = (Cészom*'céd(1+gk,Zozz)Zolp+(C§d+Cfis )Zozz)
S _ Zonf - Z()?
22 — 5~ ‘ !
Zout + ZOZ (Y ' ) ng Y Cds
! nT¢ ~ Zeros OfS 0iP + gm n n + 0iP N . + YOZZ
_ Ra.+Ra—Zox N2(s) 2 c +C, c, +C,
Rils + Ra+ Zoo D(S’) @z = c c
gs gd ’
— — +C
s s ' / &
14+ — 1+ Cg: * ng
~ Ras + Ri— Zo» _ < wz;s) < wza (12)
_R&S+Rd+ZOZ 14 s 14 s
wP1 wp2 Zyp =R+ 2, Yoip=1/Zowp
. . . . . definition Zpp= (Rg +Zo, )"R.;.r Yorp=1/Zozp
Whel‘.ENQ(s) is the zero equation df22 and is obtained by replacing of some Zoy=Ro-Zo, Yoiz=1/ Zoiz
Zo2 in D(s) = 0 with —Zo2. wzs andwz4 are the zeros of2o. symbols 7 (R -7 MR Yorz=1/ Zoz2z
02Z —( g oz)" ds

The factor( R, + Rq — Zo2)/(Rhs + Ra + Zoo) is the reflection

coefficient thatlz “sees” at dc frequency.

As for S+, the physical meaning ;- is twice that of the voltage
gainVo1/V>. Si2 is given by the inspection of Fig. 2(b) as follows:

) and, therefore, for clarity, are not shown in Fig. 3(a) and (b). 34pa-
Sy =2 ds sC! Zor ! rameters of the device with gate width of 4 mm also shows similar

' R+ Ri+ Zoo .
R sCly Zon

=2

R/

wpi wps

where(R) - sChy - Zo1)/(Riys + Ra + Zo2) is the gain ofVo1 /Va
at low frequencies.

I1l. EXPERIMENTAL RESULTS AND DISCUSSIONS

D(s) frequency responses, except for$ts., whose frequency response is,
therefore, included in Fig. 3(b), as well as for comparison. The loca-
. (13) tions of poles and zeros have to be known in order to discuss the charac-
as T Ra + Zoz <1 + L) <1 + L) teristics of the frequency responses of theggarameters. In general, it
involves solving the cubic equation of (8) to find the three poles, which
is, of course, difficult. However, as we mentioned previously, if the
third-order term is negligible, then (8) becomes quadratic equation (9),
which can be solved easily. As can be seen clearly in Fig. 3(a) and (b),
the two-pole approximation based on (9) indeed gives very satisfactory
results. Dominant pole (zero) approximation can be used to obtain the
(1)—(13) have been applied to Fujitsu GaAs FETs with different gagxpressions of the poles and zeros. The results are given in Table I. It

width (0.5, 1, 2, and 4 mm). The effects of inductors in the circuit afan be shown that the expression of the second.pglgiven in Table |

Fig. 2(a) were included by replacidgy,, R., andR, with R,+ jwL,, has the physical meaning of the inverse of the time constant of the par-

R, + jwL,, and Ry + jwL, in related formulas, respectively. Theallel combination of’/,,,,, R/, andR,+ Zo-. A significant advantage

S-parameters of the transistor with gate width of 4 mm were plottaaf our theory is that, once the expressions of the two poles are known,

in a Smith chart, as shown in Fig. 1. Excellent agreement between dhke expressions of the zeros $f; and.S.» are readily obtained. The

culated values and experimental data [4] can be seen clearly in Figzéros ofS1, wz1, andwzs, can be obtained easily by replacigg.

The method has been applied to Si MOSFETSs with good agreementdth — Z, in the expressions aof,; andw,2, respectively. The zeros

well. of Ss2, wys, andwz4 can be obtained easily by replacitg. with
The frequency responses of the fotiwparameters of the Fujitsu —Zo. in the expressions af,; andw,., respectively.

GaAs FETs with gate width of 2 mm are shown in Fig. 3(a) and (b), From (11) and the two-pole approximation, the frequency response
respectively. The characteristics of the devices with gate width of 0% 5>, has two poles and one zero. This zero is usually much larger

and 1 mm are similar to those of the device with gate width of 2 mthan the two poles, which results in the shape of the Bode plidt.ef
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Fig. 3. Frequency responses of the magnitude of the $oparameters of a
Fujitsu sub-micrometer gate GaAs FET with gate width of 2 mmSgg) and
S12.(b) S11 andS,.. —: experimental data=&-: three-pole approximation.

—A—: two-pole approximation. The frequency responses of the other size FETs
show similar characteristics, except for the one with 4-mm gate width, whose

S22 behaves differently.

shown in Fig. 3(a). From Fig. 3(a), the first palg, has the physical
meaning of 3-dB bandwidth of the voltage gai .

From (10) and the two-pole approximatio$t,; has two poles and
two zeros. The shape of the frequency respongéaf is dependent

on the locations of its two zeros with respect to its two poles. From
Table |, it is easy to see that the two zeros fall between the two poles
and, therefore, a dip will occur in a Bode plot|&fi1 |, as can be seen

in Fig. 3(b).

According to (12) and the two-pole approximatio$y. has two
poles and two zeros just like the caseSef. The two zeros ob-. fall
between its two poles in the cases of 0.5, 1, and 2 mm. Hence, a dip is
observed in the Bode plot ¢f2-|, as shown in Fig. 3(b), which is one
reason that causes the kink phenomenof-efobserved in a Smith
chart. The kink effect ir62, for a smaller device (0.5 mm) or ifi;;
for all sizes of devices are obscured by pole—zero cancellation. When
the device size is increased to 4 mm;; of S2» becomes smaller than
wp1 and, thus|S22| looks like a sloped step, as shown in Fig. 3(b).
The alternative appearance of poles and zeros is another reason for the
kink phenomenon of»: observed in a Smith chart (see Fig. 1).

According to (13) and the two-pole approximatio$,. has two
poles and one zero. This zero occurs at zero frequency and explains
the bell-shape frequency responsé$t:| in Fig. 3(a) well.

IV. CONCLUSIONS

In summary, thes-parameters of transistors have been interpreted in
terms of poles and zeros. All the foSrparameters have the same two
poles. It is found that the two zeros 6f; always fall between its two
poles and, hence, a dip is observed in the frequency respohSe pf
The locations of the two zeros 6%: with respect to its two poles are
dependent on the device size. For smaller transistosshehaves sim-
ilarly to S . For larger transistors, one zero 8f, becomes smaller
than its first pole and, therefore, the shape of a sloped step is observed,
which is one reason for the kink phenomenonSet observed in a
Smith chart.S\2 has a zero at zero frequency and this explains why
the frequency response [#2| looks like a bell shape. Our proposed
method thus provides a certain insight into the behavior ofSthEa-
rameters and, hence, may be helpful for RF integrated circuit (RFIC)
designs.

REFERENCES

[1] B. Bayrajtariglu, N. Camilleri, and S. A. Lambert, “Microwave perfor-

mance of n-p-n and p-n-p AlGaAs/GaAs heterojunction bipolar transis-

tors,” IEEE Trans. Microwave Theory Techvol. 36, pp. 1869-1873,

Dec. 1988.

[2] P.R. Gray and R. G. MeyeAnalysis and Design of Analog Integrated
Circuits.  New York: Wiley, 1993, pp. 579-584.

[3] A.S.SedraandK. C. SmitiMicroelectronic Circuits4th ed. Oxford,
U.K.: Oxford Univ. Press, 1993, pp. 595-601.

[4] Y. Aokiand Y. Hirano, “High-power GaAs FETSs,” inligh Power GaAs
FET Amplifiers J. L. B. Walker, Ed. Norwood, MA: Artech House,
1993, p. 81.



	MTT023
	Return to Contents


